【題目】已知函數(shù)f(x)=m﹣|x﹣2|,m∈R,且f(x+2)≥0的解集為[﹣1,﹣1].
(1)求m的值;
(2)若a,b,c∈R,且
+
+
=m,求證:a2+b2+c2≥36.
【答案】
(1)解:函數(shù)f(x)=m﹣|x﹣2|,m∈R,
故 f(x+2)=m﹣|x|,由題意可得m﹣|x|≥0的解集為[﹣1,1],
即|x|≤m 的解集為[﹣1,1],故m=1
(2)證明:由(1)得:
+
+
=1,
由柯西不等式可得:
(
+
+
)(a2+b2+c2)≥(1+2+3)2=36,
故a2+b2+c2≥36
【解析】(1)根據(jù)不等式的性質(zhì)得到|x|≤m 的解集為[﹣1,1],求出m的值即可;(2)根據(jù)柯西不等式的性質(zhì)證明即可.
【考點精析】本題主要考查了基本不等式和絕對值不等式的解法的相關(guān)知識點,需要掌握基本不等式:![]()
,(當(dāng)且僅當(dāng)
時取到等號);變形公式:![]()
;含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,該幾何體是由一個直三棱柱ADE﹣BCF和一個正四棱錐P﹣ABCD組合而成,AD⊥AF,AE=AD=2. ![]()
(Ⅰ)證明:平面PAD⊥平面ABFE;
(Ⅱ)求正四棱錐P﹣ABCD的高h(yuǎn),使得二面角C﹣AF﹣P的余弦值是
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
是定義域在R上的奇函數(shù),且f(2)=
.
(1)求實數(shù)a、b的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并用定義證明;
(3)解不等式:f(log
(2x﹣2)]+f[log2(1﹣
x)]≥0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
為奇函數(shù)
(1)求
的值.
(2)探究
的單調(diào)性,并證明你的結(jié)論.
(3)求滿足
的
的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:mx﹣y=1,若直線l與直線x﹣(m﹣1)y=2垂直,則m的值為 , 動直線l:mx﹣y=1被圓C:x2﹣2x+y2﹣8=0截得的最短弦長為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ex﹣x,h(x)=﹣kx3+kx2﹣x+1.
(1)求f(x)的最小值;
(2)設(shè)h(x)≤f(x)對任意x∈[0,1]恒成立時k的最大值為λ,證明:4<λ<6.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=x2+bx+c3x(b,c∈R),若{x∈R|f(x)=0}={x∈R|f(f(x))=0}≠,則b+c的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若f(x)的定義域為R,f′(x)>3恒成立,f(1)=9,則f(x)>3x+6解集為( )
A.(﹣1,1)
B.(﹣1,+∞)
C.(﹣∞,﹣1)
D.(1.+∞)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com