【題目】如圖,在正方體ABCD﹣A1B1C1D1中,棱長(zhǎng)為2,M,N分別為A1B,AC的中點(diǎn).
![]()
(1)證明:MN//B1C;
(2)求A1B與平面A1B1CD所成角的大小.
【答案】(1)見(jiàn)解析;
(2)
與平面
所成角為
.
【解析】
(1)以
為原點(diǎn)建立空間直角坐標(biāo)系,通過(guò)坐標(biāo)運(yùn)算求得
,由此證得
.
(2)利用直線
的方向向量和平面
的法向量,求得線面角的正弦值,由此求得線面角的大小.
(1)如圖,以點(diǎn)D為坐標(biāo)原點(diǎn),DA為x軸, DC為y軸,DD1為z軸建立空間直角坐標(biāo)系.
![]()
則
,
,
,
,
,
.
∴
,
.
∴
,∴
,
即
.
(2)易得
,
, ∴
,
.
設(shè)平面ADE的一個(gè)法向量為
,
則
即![]()
令
,則
,所以
.
設(shè)A1B與平面A1 B1CD所成角為θ ,
則
.
∴ A1B與平面A1 B1CD所成角為30°.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】進(jìn)入
月份,香港大學(xué)自主招生開(kāi)始報(bào)名,“五校聯(lián)盟”統(tǒng)一對(duì)五校高三學(xué)生進(jìn)行綜合素質(zhì)測(cè)試,在所有參加測(cè)試的學(xué)生中隨機(jī)抽取了部分學(xué)生的成績(jī),得到如圖所示的成績(jī)頻率分布直方圖:
![]()
(1)估計(jì)五校學(xué)生綜合素質(zhì)成績(jī)的平均值;
(2)某校決定從本校綜合素質(zhì)成績(jī)排名前
名同學(xué)中,推薦
人參加自主招生考試,若已知
名同學(xué)中有
名理科生,2名文科生,試求這3人中含文科生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱錐P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=
AD,E,F分別為線段AD,PC的中點(diǎn).
![]()
(1)求證:AP∥平面BEF;
(2)求證:BE⊥平面PAC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某運(yùn)輸公司有
名駕駛員和
名工人,有
輛載重量為
噸的甲型卡車(chē)和
輛載重量為
噸的乙型卡車(chē).某天需運(yùn)往
地至少
噸的貨物,派用的車(chē)需滿載且只運(yùn)送一次.派用的每輛甲型卡車(chē)需配
名工人,運(yùn)送一次可得利潤(rùn)
元:派用的每輛乙型卡車(chē)需配
名工人,運(yùn)送一次可得利潤(rùn)
元,該公司合理計(jì)劃當(dāng)天派用兩類(lèi)卡車(chē)的車(chē)輛數(shù),可得的最大利潤(rùn)多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形.謝爾賓斯基三角形是一種分形,由波蘭數(shù)學(xué)家謝爾賓斯基1915年提出.具體操作是取一個(gè)實(shí)心三角形,沿三角形的三邊中點(diǎn)連線,將它分成4個(gè)小三角形,去掉中間的那一個(gè)小三角形后,對(duì)其余3個(gè)小三角形重復(fù)上述過(guò)程逐次得到各個(gè)圖形,如圖.
![]()
現(xiàn)在上述圖(3)中隨機(jī)選取一個(gè)點(diǎn),則此點(diǎn)取自陰影部分的概率為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知偶函數(shù)
,當(dāng)
時(shí),
,若
,
為銳角三角形的兩個(gè)內(nèi)角,則( )
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果種植基地引進(jìn)一種新水果品種,經(jīng)研究發(fā)現(xiàn)該水果每株的產(chǎn)量
(單位:
)和與它“相近”的株數(shù)
具有線性相關(guān)關(guān)系(兩株作物“相近”是指它們的直線距離不超過(guò)
),并分別記錄了相近株數(shù)為0,1,2,3,4時(shí)每株產(chǎn)量的相關(guān)數(shù)據(jù)如下:
| 0 | 1 | 2 | 3 | 4 |
| 15 | 12 | 11 | 9 | 8 |
(1)求出該種水果每株的產(chǎn)量
關(guān)于它“相近”株數(shù)
的回歸方程;
(2)該種植基地在如圖所示的長(zhǎng)方形地塊的每個(gè)格點(diǎn)(橫縱直線的交點(diǎn))處都種了一株該種水果,其中每個(gè)小正方形的面積都為
,現(xiàn)從所種的該水果中隨機(jī)選取一株,試根據(jù)(1)中的回歸方程,預(yù)測(cè)它的產(chǎn)量的平均數(shù).
附:回歸方程
中斜率和截距的最小二乘法估計(jì)公式分別為:
,
.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐
中,
是邊長(zhǎng)為2的正三角形,
,E、F、H分別為AP、AB、AC的中點(diǎn),PF交BE于點(diǎn)M,CF交BH于點(diǎn)N,
,
.
求證:
平面BEH;
求證:
;
求直線PA與平面ABC所成角的正弦值.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com