【題目】某學(xué)校為了了解高一年級(jí)學(xué)生學(xué)習(xí)數(shù)學(xué)的狀態(tài),從期中考試成績中隨機(jī)抽取50名學(xué)生的數(shù)學(xué)成績,按成績分組:第1組
,第2組
,第3組
,第4組
,第5組
,得到的頻率分布直方圖如圖所示.
![]()
(1)由頻率分布直方圖,估計(jì)這50名學(xué)生數(shù)學(xué)成績的中位數(shù)和平均數(shù)(保留到0.01);
(2)該校高一年級(jí)共有1000名學(xué)生,若本次考試成績90分以上(含90分)為“優(yōu)秀”等次,則根據(jù)頻率分布直方圖估計(jì)該校高一學(xué)生數(shù)學(xué)成績達(dá)到“優(yōu)秀”等次的人數(shù).
【答案】(1)中位數(shù)為
,平均數(shù)為
(2)![]()
【解析】
(1)設(shè)這50名學(xué)生數(shù)學(xué)成績的中位數(shù)和平均數(shù)分別為
,因?yàn)榍?/span>2組的頻率之和為
,因?yàn)榍?/span>3組的頻率之和為
,所以
,求出
即可求得答案;
(2)因?yàn)闃颖局?/span>90分及以上的頻率為
,所以該校高一年級(jí)1000名學(xué)生中,根據(jù)頻率分布直方圖,即可估計(jì)該校高一學(xué)生數(shù)學(xué)成績達(dá)到人數(shù).
“優(yōu)秀”等次的人數(shù)
(1)設(shè)這50名學(xué)生數(shù)學(xué)成績的中位數(shù)和平均數(shù)分別為![]()
因?yàn)榍?/span>2組的頻率之和為
,因?yàn)榍?/span>3組的頻率之和為
,所以
,
由
,得
.
所以,這50名學(xué)生數(shù)學(xué)成績的中位數(shù)和平均數(shù)分別為
,
(2)因?yàn)闃颖局?/span>90分及以上的頻率為
,
所以該校高一年級(jí)1000名學(xué)生中,根據(jù)頻率分布直方圖估計(jì)該校高一學(xué)生數(shù)學(xué)成績達(dá)到
“優(yōu)秀”等次的人數(shù)為
人.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐A﹣BCD中,平面ABC⊥平面BCD,△BAC與BCD均為等腰直角三角形,且∠BAC=∠BCD=90°,BC=2,點(diǎn)P是線段AB上的動(dòng)點(diǎn),若線段CD上存在點(diǎn)Q,使得異面直線PQ與AC成30°的角,則線段PA長的取值范圍是( )
![]()
A.(0,
)B.[0,
]C.(
,
)D.(
,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,隨著網(wǎng)絡(luò)的普及,數(shù)碼產(chǎn)品早已走進(jìn)千家萬戶的生活,為了節(jié)約資源,促進(jìn)資源循環(huán)利用,折舊產(chǎn)品回收行業(yè)得到迅猛發(fā)展,電腦使用時(shí)間越長,回收價(jià)值越低,某二手電腦交易市場對(duì)2018年回收的折舊電腦交易前使用的時(shí)間進(jìn)行了統(tǒng)計(jì),得到如圖所示的頻率分布直方圖,在如圖對(duì)時(shí)間使用的分組中,將使用時(shí)間落入各組的頻率視為概率.
![]()
(1)若在該市場隨機(jī)選取3個(gè)2018年成交的二手電腦,求至少有2個(gè)使用時(shí)間在
上的概率;
(2)根據(jù)電腦交易市場往年的數(shù)據(jù),得到如圖所示的散點(diǎn)圖,其中
(單位:年)表示折舊電腦的使用時(shí)間,
(單位:百元)表示相應(yīng)的折舊電腦的平均交易價(jià)格.
![]()
(ⅰ)由散點(diǎn)圖判斷,可采用
作為該交易市場折舊電腦平均交易價(jià)格與使用年限
的回歸方程,若
,
,選用如下參考數(shù)據(jù),求
關(guān)于
的回歸方程.
|
|
|
|
|
|
5.5 | 8.5 | 1.9 | 301.4 | 79.75 | 385 |
(ⅱ)根據(jù)回歸方程和相關(guān)數(shù)據(jù),并用各時(shí)間組的區(qū)間中點(diǎn)值代表該組的值,估算該交易市場收購1000臺(tái)折舊電腦所需的費(fèi)用
附:參考公式:對(duì)于一組數(shù)據(jù)
的斜率和截距的最小二乘估計(jì)分別為:
,
.參考數(shù)據(jù):
,
,
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,下述四個(gè)結(jié)論:
①
是偶函數(shù);
②
的最小正周期為
;
③
的最小值為0;
④
在
上有3個(gè)零點(diǎn)
其中所有正確結(jié)論的編號(hào)是( )
A.①②B.①②③C.①③④D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
,圓
,動(dòng)圓
與圓
外切并與圓
內(nèi)切,圓心
的軌跡為曲線
.
(1)求
的方程;
(2)若直線
與曲線
交于
兩點(diǎn),問是否在
軸上存在一點(diǎn)
,使得當(dāng)
變動(dòng)時(shí)總有
?若存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)
為曲線
上的動(dòng)點(diǎn),點(diǎn)
在線段
上,且滿足
,求點(diǎn)
的軌跡
的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)
的極坐標(biāo)為
,點(diǎn)
在曲線
上,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln (x+1)-
-x,a∈R.
(1)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若存在x>0,使f(x)+x+1<-
(a∈Z)成立,求a的最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com