已知函數(shù)
.
(1)若
在
處取得極大值,求實數(shù)
的值;
(2)若
,求
在區(qū)間
上的最大值.
(1)
;(2)詳見解析.
解析試題分析:(1) 本小題首先利用導數(shù)的公式和法則求得原函數(shù)的導函數(shù),通過列表分析其單調(diào)性,進而尋找極大值點;(2) 本小題結(jié)合(1)中的分析可知參數(shù)
的取值范圍影響函數(shù)在區(qū)間
上的單調(diào)性,于是對參數(shù)
的取值范圍進行分段討論,從而求得函數(shù)在區(qū)間
上的單調(diào)性,進而求得該區(qū)間上的最大值.
試題解析:(1)因為
![]()
令
,得
,![]()
所以
,
隨
的變化情況如下表:
所以![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
0 ![]()
0 ![]()
![]()
↗ 極大值 ↘ 極小值 ↗
6分
(2)因為
所以 ![]()
當
時,
對
成立
所以當
時,
取得最大值![]()
當
時, 在![]()
![]()
科目:高中數(shù)學 來源: 題型:解答題
已知
是二次函數(shù),不等式
的解集是(0,5),且f(x)在區(qū)間[-1,4]上的最大值是12.
(1)求
的解析式;
(2)是否存在自然數(shù)m,使得方程
=0在區(qū)間(m,m+1)內(nèi)有且只有兩個不等的實數(shù)根?若存在,求出所有m的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)
和
是函數(shù)
的兩個極值點,其中
,
.
(Ⅰ) 求
的取值范圍;
(Ⅱ) 若
,求
的最大值(e是自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某出版社新出版一本高考復習用書,該書的成本為5元/本,經(jīng)銷過程中每本書需付給代理商m元(1≤m≤3)的勞務(wù)費,經(jīng)出版社研究決定,新書投放市場后定價為
元/本(9≤
≤11),預計一年的銷售量為
萬本.
(1)求該出版社一年的利潤
(萬元)與每本書的定價
的函數(shù)關(guān)系式;
(2)當每本書的定價為多少元時,該出版社一年的利潤
最大,并求出
的最大值
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
在點
處的切線方程為
.
⑴求函數(shù)
的解析式;
⑵若對于區(qū)間
上任意兩個自變量的值
都有
,求實數(shù)
的最小值;
⑶若過點
可作曲線
的三條切線,求實數(shù)
的取值范圍.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com