【題目】如圖,在等腰梯形ABCD中,AD∥BC,AB=BC=CD=1,AD=2,點(diǎn)E、F分別在線段AB、AD上,且EF∥CD,將△AEF沿EF折起到△MEF的位置,并使平面MEF⊥平面BCDFE,得到幾何體M﹣BCDEF,則折疊后的幾何體的體積的最大值為_____.
![]()
【答案】![]()
【解析】
設(shè)
,在等腰梯形
中,
,則
是邊長(zhǎng)為
的等邊三角形,求出折疊后棱錐的高,把棱錐體積表示為
的函數(shù),利用導(dǎo)數(shù)求最值.
設(shè)AE=x(0<x≤1),
在等腰梯形ABCD中,由AD∥BC,AB=BC=CD=1,AD=2,可得∠BAD=60°,
由EF∥CD,可得△AEF是邊長(zhǎng)為x的等邊三角形,
將△AEF沿EF折起到△MEF的位置,并使平面MEF⊥平面BCDFE,
則EF邊上的高為
,
,
∴
(0<x≤1).
0在(0,1]上恒成立,
∴
在(0,1]上為增函數(shù),
所以折疊后的幾何體的體積的最大值為V(1)
.
故答案為:
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市場(chǎng)研究人員為了了解產(chǎn)業(yè)園引進(jìn)的甲公司前期的經(jīng)營(yíng)狀況,對(duì)該公司2018年連續(xù)六個(gè)月的利潤(rùn)進(jìn)行了統(tǒng)計(jì),并根據(jù)得到的數(shù)據(jù)繪制了相應(yīng)的折線圖,如圖所示
![]()
(1)由折線圖可以看出,可用線性回歸模型擬合月利潤(rùn)
(單位:百萬(wàn)元)與月份代碼
之間的關(guān)系,求
關(guān)于
的線性回歸方程,并預(yù)測(cè)該公司2019年3月份的利潤(rùn);
(2)甲公司新研制了一款產(chǎn)品,需要采購(gòu)一批新型材料,現(xiàn)有
,
兩種型號(hào)的新型材料可供選擇,按規(guī)定每種新型材料最多可使用
個(gè)月,但新材料的不穩(wěn)定性會(huì)導(dǎo)致材料損壞的年限不相同,現(xiàn)對(duì)
,
兩種型號(hào)的新型材料對(duì)應(yīng)的產(chǎn)品各
件進(jìn)行科學(xué)模擬測(cè)試,得到兩種新型材料使用壽命的頻數(shù)統(tǒng)計(jì)如下表:
使用壽命 材料類型 |
|
|
|
| 總計(jì) |
|
|
|
|
|
|
|
|
|
|
|
|
如果你是甲公司的負(fù)責(zé)人,你會(huì)選擇采購(gòu)哪款新型材料?
參考數(shù)據(jù):
,
.參考公式:回歸直線方程為
,其中
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示,在等腰梯形ABCD中,
,
,垂足為E,
,
將
沿EC折起到
的位置,如圖2所示,使平面
平面ABCE.
![]()
(1)連結(jié)BE,證明:
平面
;
(2)在棱
上是否存在點(diǎn)G,使得
平面
,若存在,直接指出點(diǎn)G的位置
不必說(shuō)明理由
,并求出此時(shí)三棱錐
的體積;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=x2和點(diǎn)P(0,1),若過(guò)某點(diǎn)C可作拋物線的兩條切線,切點(diǎn)分別是A,B,且滿足
,則△ABC的面積為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直四棱柱
中,底面
是平行四邊形, 點(diǎn)
,
分別在棱
,
上,且
,
.
![]()
(1)求證:
平面
;
(2)若
,
,
,求二面角
的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex﹣2mx﹣n(0<x<1),其中m,n∈R,e為自然對(duì)數(shù)的底數(shù).
(1)試討論函數(shù)f(x)的極值;
(2)記函數(shù)g(x)=ex﹣mx2﹣nx﹣1(0<x<1),且g(x)的圖象在點(diǎn)
處的切的斜率為
,若函數(shù)g(x)存在零點(diǎn),試求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系
中曲線
的參數(shù)方程為
(
為參數(shù)),以
為極點(diǎn),
軸的正半軸為極軸,建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(1)求曲線
的普通方程以及直線
的直角坐標(biāo)方程;
(2)將曲線
向左平移2個(gè)單位,再將曲線
上的所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的
,得到曲線
,求曲線
上的點(diǎn)到直線
的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)若函數(shù)
在
上是減函數(shù),求實(shí)數(shù)
的最小值;
(2)若存在
,
,使
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x﹣1|+|2x﹣6|(x∈R),記f(x)的最小值為c.
(1)求c的值;
(2)若實(shí)數(shù)ab滿足a>0,b>0,a+b=c,求
的最小值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com