【題目】某兒童樂園在“六一”兒童節(jié)推出了一項趣味活動.參加活動的兒童需轉(zhuǎn)動如圖所示的轉(zhuǎn)盤兩次,每次轉(zhuǎn)動后,待轉(zhuǎn)盤停止轉(zhuǎn)動時,記錄指針所指區(qū)域中的數(shù).設(shè)兩次記錄的數(shù)分別為x,y.獎勵規(guī)則如下:
![]()
①若
,則獎勵玩具一個;
②若
,則獎勵水杯一個;
③其余情況獎勵飲料一瓶.
假設(shè)轉(zhuǎn)盤質(zhì)地均勻,四個區(qū)域劃分均勻.小亮準備參加此項活動.
(Ⅰ)求小亮獲得玩具的概率;
(Ⅱ)請比較小亮獲得水杯與獲得飲料的概率的大小,并說明理由.
【答案】(Ⅰ)
.(Ⅱ)小亮獲得水杯的概率大于獲得飲料的概率.
【解析】
試題(Ⅰ)確定基本事件的概率,利用古典概型的概率公式求小亮獲得玩具的概率;(Ⅱ)求出小亮獲得水杯與獲得飲料的概率,即可得出結(jié)論
試題解析:(1)兩次記錄的所有結(jié)果為(1,1),(1,,2),(1,3),(1,4),
(2,1),(2,2),(2,3),(2,4),
(3,1),(3,2),(3,3),(3,4),
(4,1),(4,2),(4,3),(4,4),共16個。
滿足xy≤3的有(1,1),(1,,2),(1,3),(2,1),(3,1),共5個,所以小亮獲得玩具的概率為
。…4分
(2) 滿足xy≥8的有(2,4),(3,,3),(3,4),(4,2),(4,3),(4,4),共6個,所以小亮獲得水杯的概率為
;………8分
小亮獲得飲料的概率為
,所以小亮獲得水杯的概率大于獲得飲料的概率。…10分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=
的圖象與函數(shù)y=2sinπx(﹣3≤x≤5)的圖象所有交點的橫坐標之和等于( )
A.2 B.4 C.6 D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某神奇“黃金數(shù)學(xué)草”的生長圖.第1階段生長為豎直向上長為1米的枝干,第2階段在枝頭生長出兩根新的枝干,新枝干的長度是原來的
,且與舊枝成120°,第3階段又在每個枝頭各長出兩根新的枝干,新枝干的長度是原來的
,且與舊枝成120°,……,依次生長,直到永遠.
![]()
(1)求第3階段“黃金數(shù)學(xué)草”的高度;
(2)求第13階段“黃金數(shù)學(xué)草”的高度;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,對于任意的
,都有
, 當(dāng)
時,
,且
.
( I ) 求
的值;
(II) 當(dāng)
時,求函數(shù)
的最大值和最小值;
(III) 設(shè)函數(shù)
,判斷函數(shù)g(x)最多有幾個零點,并求出此時實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)試作出
的圖象,并根據(jù)圖象寫出
的單調(diào)區(qū)間;
(2)若函數(shù)
有兩個零點,求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若函數(shù)
在
上無極值點,試討論函數(shù)
的單調(diào)性;
(2)證明:當(dāng)
時,對于任意
,不等式
恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某投資公司計劃投資
,
兩種金融產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,
產(chǎn)品的利潤
與投資金額
的函數(shù)關(guān)系為
,
產(chǎn)品的利潤
與投資金額
的函數(shù)關(guān)系為
.(注:利潤與投資金額單位:萬元)
(1)該公司已有100萬元資金,并全部投入
,
兩種產(chǎn)品中,其中
萬元資金投入
產(chǎn)品,試把
,
兩種產(chǎn)品利潤總和表示為
的函數(shù),并寫出定義域;
(2)試問:怎樣分配這100萬元資金,才能使公司獲得最大利潤?其最大利潤為多少萬元?
【答案】(1)
;(2)20,28.
【解析】
(1)設(shè)投入
產(chǎn)品
萬元,則投入
產(chǎn)品
萬元,根據(jù)題目所給兩個產(chǎn)品利潤的函數(shù)關(guān)系式,求得兩種產(chǎn)品利潤總和的表達式.(2)利用基本不等式求得利潤的最大值,并利用基本不等式等號成立的條件求得資金的分配方法.
(1)其中
萬元資金投入
產(chǎn)品,則剩余的
(萬元)資金投入
產(chǎn)品,
利潤總和為:
,
(2)因為
,![]()
所以由基本不等式得:
,
當(dāng)且僅當(dāng)
時,即:
時獲得最大利潤28萬.
此時投入A產(chǎn)品20萬元,B產(chǎn)品80萬元.
【點睛】
本小題主要考查利用函數(shù)求解實際應(yīng)用問題,考查利用基本不等式求最大值,屬于中檔題.
【題型】解答題
【結(jié)束】
20
【題目】已知曲線
.
(1)求曲線在
處的切線方程;
(2)若曲線在點
處的切線與曲線
相切,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系
中,直線
的參數(shù)方程為
(
為參數(shù)).以坐標原點為極點,
軸正半軸為極軸建立極坐標系,圓
的極坐標方程為
.
(1)求直線
和圓
的普通方程;
(2)已知直線
上一點
,若直線
與圓
交于不同兩點
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】實數(shù)對
滿足不等式組
則目標函數(shù)
當(dāng)且僅當(dāng)
,
時取最大值,則
的取值范圍是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com