【題目】已知曲線
的參數(shù)方程為
(
為參數(shù)),直線
的參數(shù)方程為
(
為參數(shù)).
(Ⅰ)求曲線
和直線
的普通方程;
(Ⅱ)若點(diǎn)
為曲線
上一點(diǎn),求點(diǎn)
到直線
的距離的最大值.
【答案】解:(Ⅰ)消去參數(shù)
可得曲線
的普通方程
,
消去參數(shù)
可得直線
的普通方程為
;
(Ⅱ)∵點(diǎn)
為曲線
上一點(diǎn),
∴點(diǎn)
的坐標(biāo)為
,
根據(jù)點(diǎn)到直線的距離公式,得
.
∴ ![]()
【解析】(1)利用cos2θ+sin2θ=1可得曲線C的直角坐標(biāo)方程.消去參數(shù)t可得:直線l的直角坐標(biāo)方程.
(2)設(shè)P(2cosθ,sinθ),直線l為 x y + 4 = 0 ,利用點(diǎn)到直線的距離公式、三角函數(shù)的單調(diào)性即可得出.
【考點(diǎn)精析】本題主要考查了橢圓的參數(shù)方程的相關(guān)知識點(diǎn),需要掌握橢圓![]()
的參數(shù)方程可表示為
才能正確解答此題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+bx+1(a,b為實數(shù),a≠0,x∈R).
(1)若函數(shù)f(x)的圖象過點(diǎn)(-2,1),且方程f(x)=0有且只有一個根,求f(x)的表達(dá)式;
(2)在(1)的條件下,當(dāng)x∈[-1,2]時,g(x)=f(x)-kx是單調(diào)函數(shù),求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=aln x-bx2 , a,b∈R.
(1)若f(x)在x=1處與直線y=-
相切,求a,b的值;
(2)在(1)的條件下,求f(x)在
上的最大值;
(3)若不等式f(x)≥x對所有的b∈(-∞,0],x∈(e,e2]都成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,且點(diǎn)
滿足條件
,若點(diǎn)
關(guān)于直線
的對稱點(diǎn)是
,則線段
的最小值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓
:
(
)的焦距與橢圓
:
的短軸長相等,且
與
的長軸長相等,這兩個橢圓在第一象限的交點(diǎn)為
,直線
經(jīng)過
在
軸正半軸上的頂點(diǎn)
且與直線
(
為坐標(biāo)原點(diǎn))垂直,
與
的另一個交點(diǎn)為
,
與
交于
,
兩點(diǎn).![]()
(1)求
的標(biāo)準(zhǔn)方程;
(2)求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐
中,底面
為正方形,
平面
,且
,點(diǎn)
在線段
上,且
.![]()
(Ⅰ)證明:平面
平面
;
(Ⅱ)求二面角
的余弦值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com