【題目】已知向量
=(1,
),
=(sinx,cosx),設(shè)函數(shù)f(x)=
![]()
(1)求函數(shù)f(x)的最小正周期和最大值;
(2)設(shè)銳角△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若c=
,cosB=
,且f(C)=
,求b.
【答案】
(1)解:f(x)=sinx+
cosx=2sin(x+
),
∴f(x)的最小正周期T=2π,f(x)的最大值為2
(2)解:∵f(C)=2sin(C+
)=
,∴sin(C+
)=
,
∵0
,∴C=
.
∵cosB=
,∴sinB=
.
由正弦定理得
,∴
,
解得:b=
.
【解析】(1)根據(jù)向量的數(shù)量積公式得出f(x)解析式,使用和角公式化簡(jiǎn),結(jié)合正弦函數(shù)的性質(zhì)得出答案;(2)根據(jù)f(C)=
得出C,根據(jù)同角三角函數(shù)的關(guān)系計(jì)算sinB,由正弦定理得出b.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解正弦定理的定義的相關(guān)知識(shí),掌握正弦定理:
,以及對(duì)余弦定理的定義的理解,了解余弦定理:
;
;
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:x2+y2+2x-4y+3=0.
(1)若圓C的切線(xiàn)在x軸和y軸上的截距相等,求此切線(xiàn)的方程.
(2)從圓C外一點(diǎn)P(x1,y1)向該圓引一條切線(xiàn),切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且有|PM|=|PO|,求使得|PM|取得最小值的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=
sin
cos
+sin2
(ω>0,0<φ<
).其圖象的兩個(gè)相鄰對(duì)稱(chēng)中心的距離為
,且過(guò)點(diǎn)(
,1).
(1)函數(shù)f(x)的解析式;
(2)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c.已知
=
.且f(A)=
,求角C的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校為了解學(xué)生在課外讀物方面的支出情況,抽取了n名同學(xué)進(jìn)行調(diào)查,結(jié)果顯示這些同學(xué)的支出都在[10,50)(單位:元),其中支出在[30,50)(單位:元)的同學(xué)有67人,其頻率分布直方圖如圖所示,則n的值為( )
![]()
A. 100 B. 120 C. 130 D. 390
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校為了解學(xué)生在課外讀物方面的支出情況,抽取了n名同學(xué)進(jìn)行調(diào)查,結(jié)果顯示這些同學(xué)的支出都在[10,50)(單位:元),其中支出在[30,50)(單位:元)的同學(xué)有67人,其頻率分布直方圖如圖所示,則n的值為( )
![]()
A. 100 B. 120 C. 130 D. 390
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】農(nóng)科院的專(zhuān)家為了了解新培育的甲、乙兩種麥苗的長(zhǎng)勢(shì)情況,從甲、乙兩種麥苗的試驗(yàn)田中各抽取6株麥苗測(cè)量麥苗的株高,數(shù)據(jù)如下:(單位:cm)
甲:9,10,11,12,10,20
乙:8,14,13,10,12,21.
(1)在給出的方框內(nèi)繪出所抽取的甲、乙兩種麥苗株高的莖葉圖;
(2)分別計(jì)算所抽取的甲、乙兩種麥苗株高的平均數(shù)與方差,并由此判斷甲、乙兩種麥苗的長(zhǎng)勢(shì)情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列
滿(mǎn)足
,
,其中
.
(1)設(shè)
,求證:數(shù)列
是等差數(shù)列,并求出
的通項(xiàng)公式;
(2)設(shè)
,數(shù)列
的前
項(xiàng)和為
,是否存在正整數(shù)
,使得
對(duì)于
恒成立,若存在,求出
的最小值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某書(shū)店銷(xiāo)售剛剛上市的某知名品牌的高三數(shù)學(xué)單元卷,按事先擬定的價(jià)格進(jìn)行5天試銷(xiāo),每種單價(jià)試銷(xiāo)1天,得到如下數(shù)據(jù):
單價(jià) | 18 | 19 | 20 | 21 | 22 |
銷(xiāo)量 | 61 | 56 | 50 | 48 | 45 |
(1)求試銷(xiāo)5天的銷(xiāo)量的方差和
對(duì)
的回歸直線(xiàn)方程;
(2)預(yù)計(jì)今后的銷(xiāo)售中,銷(xiāo)量與單價(jià)服從(1)中的回歸方程,已知每?jī)?cè)單元卷的成本是14元,為了獲得最大利潤(rùn),該單元卷的單價(jià)卷的單價(jià)應(yīng)定為多少元?
(附:
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Asin(x+φ)(A>0,0<φ<π),x∈R的最大值是1,其圖象經(jīng)過(guò)點(diǎn)
.
(1)求f(x)的解析式;
(2)已知
,且
,
,求f(α﹣β)的值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com