【題目】定義區間(a,b),[a,b),(a,b],[a,b]的長度均為
,多個區間并集的長度為各區間長度之和,例如,(1,2)
[3,5)的長度d=(2-1)+(5-3)=3. 用[x]表示不超過x的最大整數,記{x}=x-[x],其中
.設
,
,當
時,不等式
解集區間的長度為
,則
的值為_______.
【答案】7
【解析】f(x)=[x]{x}=[x](x[x])=[x]x[x]2,g(x)=x1,
f(x)<g(x)[x]x[x]2<x1即([x]1)x<[x]21,
當x∈[0,1)時,[x]=0,上式可化為x>1,
∴x∈;
當x∈[1,2)時,[x]=1,上式可化為0>0,
∴x∈;
當x∈[2,3)時,[x]=2,[x]1>0,上式可化為x<[x]+1=3,
∴當x∈[0,3)時,不等式f(x)<g(x)解集區間的長度為d=32=1;
同理可得,當x∈[3,4)時,不等式f(x)<g(x)解集區間的長度為d=42=2;
∵不等式f(x)<g(x)解集區間的長度為5,
∴k2=5,
∴k=7.
故答案為:7.
科目:高中數學 來源: 題型:
【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數,當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數.
(Ⅰ)當0≤x≤200時,求函數v(x)的表達式;
(Ⅱ)當車流密度x為多大時,車流量(單位時間內通過橋上某觀測點的車輛數,單位:輛/小時)f(x)=xv(x)可以達到最大,并求出最大值.(精確到1輛/小時).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數
在區間
上單調遞增;
函數
在其定義域上存在極值.
(1)若
為真命題,求實數
的取值范圍;
(2)如果“
或
”為真命題,“
且
”為假命題,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】天水市第一次聯考后,某校對甲、乙兩個文科班的數學考試成績進行分析,
規定:大于或等于120分為優秀,120分以下為非優秀.統計成績后,
得到如下的
列聯表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優秀的概率為
.
優秀 | 非優秀 | 合計 | |
甲班 | 10 | ||
乙班 | 30 | ||
合計 | 110 |
(1)請完成上面的列聯表;
(2)根據列聯表的數據,若按99.9%的可靠性要求,能否認為“成績與班級有關系”;
(3)若按下面的方法從甲班優秀的學生中抽取一人:把甲班優秀的10名學生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現的點數之和為被抽取人的序號。試求抽到9號或10號的概率。
參考公式與臨界值表:
。
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐
中,
為正三角形,平面
平面
,
,
,
.
![]()
(1)求證:平面
平面
;
(2)求三棱錐
的體積;
(3)在棱
上是否存在點
,使得
平面
?若存在,請確定點
的位置并證明;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx,g(x)=0.5x2-bx, (b為常數)。
(1)函數f(x)的圖象在點(1,f(1))處的切線與函數g(x)的圖象相切,求實數b的值;
(2)若函數h(x)=f(x)+g(x)在定義域上不單調,求實數b的取值范圍;
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com