【題目】已知四棱錐
,底面
是
、邊長(zhǎng)為
的菱形,又
底
,且
,點(diǎn)
分別是棱
的中點(diǎn).
![]()
(1)證明:
平面
;
(2)證明:平面
平面
;
(3)求點(diǎn)
到平面
的距離.[
【答案】(1)詳見解析(2)詳見解析(3)![]()
【解析】
試題分析:(1)要證DN∥平面PMB,只要證DN∥MQ;(2)要證平面PMB⊥平面PAD,只要證MB⊥平面PAD;
(3)利用PD是三棱錐P-AMB的高PD=2,棱錐A-PMB的體積=棱錐P-AMB的體積,利用棱錐的體積公式解之
試題解析:(1)證明:取
中點(diǎn)
,連接
,因?yàn)?/span>
分別是棱
中點(diǎn),
所以
,且
,于是
,
.
(2)
,
又因?yàn)榈酌?/span>
是
、邊長(zhǎng)為
的菱形,且
為
中點(diǎn),所以
,又
,
所以
.
.
(3)因?yàn)?/span>
是
中點(diǎn),所以點(diǎn)
與
到平面
等距離.過點(diǎn)
作
于
,由(2)由平面
平面
,所以
平面
.
故
是點(diǎn)
到平面
的距離
.
∴點(diǎn)
到平面
的距離為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
.
(1)當(dāng)
(
為自然對(duì)數(shù)的底數(shù))時(shí),求
的最小值;
(2)討論函數(shù)
零點(diǎn)的個(gè)數(shù);
(3)若對(duì)任意
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左、右焦點(diǎn)分別為
、
,橢圓上的點(diǎn)
滿足
,且
的面積為
.
(1)求橢圓
的方程;
(2)設(shè)橢圓
的左、右頂點(diǎn)分別為
、
,過點(diǎn)
的動(dòng)直線
與橢圓
相交于
、
兩點(diǎn),直線
與直線
的交點(diǎn)為
,證明:點(diǎn)
總在直線
上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】口袋中裝有質(zhì)地大小完全相同的5個(gè)球,編號(hào)分別為1,2,3,4,5,甲、乙兩人玩一種游戲:甲先摸一個(gè)球,記下編號(hào),放回后乙再摸一個(gè)球,記下編號(hào).如果兩個(gè)編號(hào)的和為偶數(shù)就算甲勝,否則算乙勝.
(1)求甲勝且編號(hào)的和為6的事件發(fā)生的概率;
(2)這種游戲規(guī)則公平嗎?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某地參加2015 年夏令營(yíng)的
名學(xué)生的身體健康情況,將學(xué)生編號(hào)為
,采用系統(tǒng)抽樣的方法抽取一個(gè)容量為
的樣本,且抽到的最小號(hào)碼為
,已知這
名學(xué)生分住在三個(gè)營(yíng)區(qū),從
到
在第一營(yíng)區(qū),從
到
在第二營(yíng)區(qū),從
到
在第三營(yíng)區(qū),則第一、第二、第三營(yíng)區(qū)被抽中的人數(shù)分別為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
的一個(gè)零點(diǎn)為-2,當(dāng)
時(shí)最大值為0.
(1)求
的值;
(2)若對(duì)
,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】成等差數(shù)列的三個(gè)正數(shù)的和等于15,并且這三個(gè)數(shù)分別加上2、5、13后成為等比數(shù)列{bn}中的b3、b4、b5.
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)數(shù)列{bn}的前n項(xiàng)和為Sn,求證:數(shù)列{Sn+
}是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(Ⅰ)函數(shù)
的圖象與
的圖象無公共點(diǎn),求實(shí)數(shù)
的取值范圍;
(Ⅱ)是否存在實(shí)數(shù)
,使得對(duì)任意的
,都有函數(shù)
的圖象在
的圖象的下方?若存在,請(qǐng)求出整數(shù)
的最大值;若不存在,請(qǐng)說理由.
(參考數(shù)據(jù):
,
,
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次籃球定點(diǎn)投籃訓(xùn)練中,規(guī)定每人最多投3次,在
處每投進(jìn)一球得3分;在
處每投進(jìn)一球得2分,如果前兩次得分之和超過3分就停止投籃;否則投第3次,某同學(xué)在
處的抽中率
,在
處的抽中率為
,該同學(xué)選擇現(xiàn)在
處投第一球,以后都在
處投,且每次投籃都互不影響,用
表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,其分布列為:
| 0 | 2 | 3 | 4 | 5 |
| 0.03 |
|
|
|
|
(1)求
的值;
(2)求隨機(jī)變量
的數(shù)學(xué)期望
;
(3)試比較該同學(xué)選擇上述方式投籃得分超過3分與選擇都在
處投籃得分超過3分的概率的大小.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com