【題目】如圖,在四棱錐
中,平面
平面
,底面
是邊長為2的正方形,且
,
.
![]()
(Ⅰ)證明:
;
(Ⅱ)求平面
與平面
所成二面角的正弦值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
年
月
日“世界讀書日”來臨之際,某校為了了解中學(xué)生課外閱讀情況,隨機抽取了
名學(xué)生,并獲得了他們一周課外閱讀時間(單位:小時)的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表.
組號 | 分組 | 頻數(shù) | 頻率 |
1 | [0,5) | 5 | 0.05 |
2 | [5,10) | a | 0.35 |
3 | [10,15) | 30 | b |
4 | [15,20) | 20 | 0.20 |
5 | [20,25] | 10 | 0.10 |
合計 | 100 | 1 | |
(1)求
、
的值
(2)作出這些數(shù)據(jù)的頻率分布直方圖
![]()
(3)假設(shè)每組數(shù)據(jù)組間是平均分布的,試估計該組數(shù)據(jù)的平均數(shù)和中位數(shù).(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若
在定義域上不單調(diào),求
的取值范圍;
(2)設(shè)
分別是
的極大值和極小值,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)的某產(chǎn)品按照每箱10件包裝,每箱產(chǎn)品在流入市場之前都要檢驗.若整箱產(chǎn)品檢驗不通過,除去檢驗費用外,每箱還要損失100元.檢驗方案如下:
第一步,一次性隨機抽取2件,若都合格則整箱產(chǎn)品檢驗通過;若都不合格則整箱產(chǎn)品檢驗不通過,檢驗結(jié)束,剩下的產(chǎn)品不再檢驗.若抽取的2件產(chǎn)品有且僅有1件合格,則進行第二步工作.
第二步,從剩下的8件產(chǎn)品中再隨機抽取1件,若不合格,則整箱產(chǎn)品檢驗不通過,檢驗結(jié)束,剩下的產(chǎn)品不再檢驗.若合格,則進行第三步工作.
第三步,從剩下的7件產(chǎn)品中隨機抽取1件,若不合格,則整箱產(chǎn)品檢驗不通過,若合格,則整箱產(chǎn)品檢驗通過,檢驗結(jié)束,剩下的產(chǎn)品都不再檢驗.
假設(shè)某箱該產(chǎn)品中有8件合格品,2件次品.
(Ⅰ)求該箱產(chǎn)品被檢驗通過的概率;
(Ⅱ)若每件產(chǎn)品的檢驗費用為10元,設(shè)該箱產(chǎn)品的檢驗費用和檢驗不通過的損失費用之和為
,求
的分布列和數(shù)學(xué)期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓
的左頂點為
,過右焦點
的直線交橢圓于
,
兩點,直線
,
分別交直線
于點
,
.
![]()
(1)試判斷以線段
為直徑的圓是否過點
,并說明理由;
(2)記
,
,
的斜率分別為
,
,
,證明:
,
,
成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形
所在平面與直角梯形
所在平面互相垂直,且
,
為
中點.
![]()
(1)求異面直線
與
所成的角;
(2)求平面
與平面
所成的二面角(銳角)的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱柱
的底面是邊長為
的菱形,且
,
平面
,
,
于點
,點
是
的中點.
![]()
(1)求證:
平面
;
(2)求平面
和平面
所成銳二面角的余弦值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com